Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of Substrate Temperature and Post-Deposition Annealing on Material Properties of Ga-Doped ZnO Prepared by Pulsed Laser Deposition

Identifieur interne : 002B66 ( Main/Repository ); précédent : 002B65; suivant : 002B67

Influence of Substrate Temperature and Post-Deposition Annealing on Material Properties of Ga-Doped ZnO Prepared by Pulsed Laser Deposition

Auteurs : RBID : Pascal:11-0238933

Descripteurs français

English descriptors

Abstract

Ga-doped ZnO films were prepared at 10 mTorr of oxygen over a broad temperature range using pulsed laser deposition. The carrier concentration of as-deposited films decreased monotonically with deposition temperature over a temperature range of 25°C to 450°C. Post-deposition annealing of as-deposited films in forming gas (5% H2 in argon) or vacuum resulted in a substantial increase in both carrier concentration and electron mobility. The figure of merit was highest for films deposited at 250°C then annealed in forming gas at 400°C. The optical transmittance was near 90% throughout the visible and near-infrared spectral regions. These results indicate that Ga-doped ZnO is a viable alternative to transparent indium-based conductive oxides.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0238933

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Influence of Substrate Temperature and Post-Deposition Annealing on Material Properties of Ga-Doped ZnO Prepared by Pulsed Laser Deposition</title>
<author>
<name sortKey="Scott, Robin C" uniqKey="Scott R">Robin C. Scott</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Mechanical, Aerospace, Chemical and Materials Engineering, Arizona State University</s1>
<s2>Tempe, AZ 85287</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Tempe, AZ 85287</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Leedy, Kevin D" uniqKey="Leedy K">Kevin D. Leedy</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Air Force Research Laboratory, Wright-Patterson AFB</s1>
<s2>OH 45433</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bayraktaroglu, Burhan" uniqKey="Bayraktaroglu B">Burhan Bayraktaroglu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Air Force Research Laboratory, Wright-Patterson AFB</s1>
<s2>OH 45433</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Look, David C" uniqKey="Look D">David C. Look</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Semiconductor Research Center, Wright State University</s1>
<s2>Dayton, OH 45435</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Dayton, OH 45435</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smith, David J" uniqKey="Smith D">David J. Smith</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Physics, Arizona State University</s1>
<s2>Tempe, AZ 85287</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Tempe, AZ 85287</wicri:noRegion>
</affiliation>
</author>
<author>
<name>DING DING</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Electrical, Computer and Energy Engineering, Arizona State University</s1>
<s2>Tempe, AZ 85287</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Tempe, AZ 85287</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XIANFENG LU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Electrical, Computer and Energy Engineering, Arizona State University</s1>
<s2>Tempe, AZ 85287</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Tempe, AZ 85287</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Yong Hang" uniqKey="Zhang Y">Yong-Hang Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Electrical, Computer and Energy Engineering, Arizona State University</s1>
<s2>Tempe, AZ 85287</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Tempe, AZ 85287</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0238933</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0238933 INIST</idno>
<idno type="RBID">Pascal:11-0238933</idno>
<idno type="wicri:Area/Main/Corpus">003128</idno>
<idno type="wicri:Area/Main/Repository">002B66</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0361-5235</idno>
<title level="j" type="abbreviated">J. electron. mater.</title>
<title level="j" type="main">Journal of electronic materials</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption spectra</term>
<term>Annealing temperature</term>
<term>Carrier density</term>
<term>Carrier mobility</term>
<term>Doped materials</term>
<term>Doping</term>
<term>Electron mobility</term>
<term>Figure of merit</term>
<term>Gallium additions</term>
<term>Indium oxide</term>
<term>Infrared spectra</term>
<term>Laser ablation technique</term>
<term>Near infrared radiation</term>
<term>Optoelectronics</term>
<term>Pulsed laser deposition</term>
<term>Solar cells</term>
<term>Substrat temperature</term>
<term>Temperature dependence</term>
<term>Thermal annealing</term>
<term>Thin films</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Température substrat</term>
<term>Recuit thermique</term>
<term>Température recuit</term>
<term>Matériau dopé</term>
<term>Dopage</term>
<term>Addition gallium</term>
<term>Dépôt laser pulsé</term>
<term>Méthode ablation laser</term>
<term>Couche mince</term>
<term>Dépendance température</term>
<term>Densité porteur charge</term>
<term>Mobilité porteur charge</term>
<term>Mobilité électron</term>
<term>Facteur mérite</term>
<term>Oxyde de zinc</term>
<term>Spectre absorption</term>
<term>Rayonnement IR proche</term>
<term>Spectre IR</term>
<term>Oxyde d'indium</term>
<term>Cellule solaire</term>
<term>Optoélectronique</term>
<term>ZnO</term>
<term>8115F</term>
<term>8460J</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ga-doped ZnO films were prepared at 10 mTorr of oxygen over a broad temperature range using pulsed laser deposition. The carrier concentration of as-deposited films decreased monotonically with deposition temperature over a temperature range of 25°C to 450°C. Post-deposition annealing of as-deposited films in forming gas (5% H
<sub>2</sub>
in argon) or vacuum resulted in a substantial increase in both carrier concentration and electron mobility. The figure of merit was highest for films deposited at 250°C then annealed in forming gas at 400°C. The optical transmittance was near 90% throughout the visible and near-infrared spectral regions. These results indicate that Ga-doped ZnO is a viable alternative to transparent indium-based conductive oxides.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0361-5235</s0>
</fA01>
<fA02 i1="01">
<s0>JECMA5</s0>
</fA02>
<fA03 i2="1">
<s0>J. electron. mater.</s0>
</fA03>
<fA05>
<s2>40</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Influence of Substrate Temperature and Post-Deposition Annealing on Material Properties of Ga-Doped ZnO Prepared by Pulsed Laser Deposition</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Group III Nitrides, SiC and ZnO</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>SCOTT (Robin C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>LEEDY (Kevin D.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BAYRAKTAROGLU (Burhan)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LOOK (David C.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>SMITH (David J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>DING DING</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>XIANFENG LU</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>ZHANG (Yong-Hang)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>CALDWELL (Joshua)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>PHILLIPS (Jamie)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>XING (Grace)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>School of Mechanical, Aerospace, Chemical and Materials Engineering, Arizona State University</s1>
<s2>Tempe, AZ 85287</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Electrical, Computer and Energy Engineering, Arizona State University</s1>
<s2>Tempe, AZ 85287</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Physics, Arizona State University</s1>
<s2>Tempe, AZ 85287</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Air Force Research Laboratory, Wright-Patterson AFB</s1>
<s2>OH 45433</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Semiconductor Research Center, Wright State University</s1>
<s2>Dayton, OH 45435</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>Naval Research Laboratory</s1>
<s2>Washington, DC</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA15>
<fA15 i1="02">
<s1>University of Michigan</s1>
<s2>Ann Arbor, MI</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA15>
<fA15 i1="03">
<s1>University of Notre Dame</s1>
<s2>Notre Dame, IN</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
</fA15>
<fA20>
<s1>419-428</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15479</s2>
<s5>354000192945040100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>50 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0238933</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of electronic materials</s0>
</fA64>
<fA66 i1="01">
<s0>DEU</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Ga-doped ZnO films were prepared at 10 mTorr of oxygen over a broad temperature range using pulsed laser deposition. The carrier concentration of as-deposited films decreased monotonically with deposition temperature over a temperature range of 25°C to 450°C. Post-deposition annealing of as-deposited films in forming gas (5% H
<sub>2</sub>
in argon) or vacuum resulted in a substantial increase in both carrier concentration and electron mobility. The figure of merit was highest for films deposited at 250°C then annealed in forming gas at 400°C. The optical transmittance was near 90% throughout the visible and near-infrared spectral regions. These results indicate that Ga-doped ZnO is a viable alternative to transparent indium-based conductive oxides.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15F</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03C</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Température substrat</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Substrat temperature</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Temperatura substrato</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Recuit thermique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Thermal annealing</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Recocido térmico</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Température recuit</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Annealing temperature</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Temperatura recocido</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Doping</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Doping</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Addition gallium</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Gallium additions</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Dépôt laser pulsé</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Pulsed laser deposition</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Méthode ablation laser</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Laser ablation technique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Mobilité porteur charge</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Carrier mobility</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Mobilité électron</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Electron mobility</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Facteur mérite</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Figure of merit</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Factor mérito</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Spectre absorption</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Absorption spectra</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Rayonnement IR proche</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Near infrared radiation</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Spectre IR</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Infrared spectra</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Optoélectronique</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Optoelectronics</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Optoelectrónica</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8115F</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fN21>
<s1>157</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002B66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0238933
   |texte=   Influence of Substrate Temperature and Post-Deposition Annealing on Material Properties of Ga-Doped ZnO Prepared by Pulsed Laser Deposition
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024